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ABSTRACT 

This thesis continues an NPS project related to wireless power transmission for micro air 

vehicles (MAVs). The conversion of radio-frequency (rf) power into usable direct-current 

(dc) power is performed by a rectifying antenna, or rectenna. The emphasis of this thesis 

is the simulation and experimental study of various rectenna designs to determine which 

best provides high efficiency, stable output power, and lightweight design. 

The analysis of rectenna design focuses on four subsystems: (1) the receiving 

antenna, (2) the matching sections, (3) the rectification, and (4) the post-rectification 

filter. Based on the findings of this research, the ultimate rectenna design implements a 

half-wave dipole antenna that performs full-wave rectification with two diodes. The post-

rectification filter is implemented by a capacitor to obtain stable dc power. The final 

design achieved an efficiency of nearly 66% for input power in the range of 200 mW. 
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I. INTRODUCTION 

A. Background 

The concept of wireless power transmission (WPT) dates back to the days of 

Heinrich Hertz and Nikola Tesla [1], who discovered that energy could be transported by 

electromagnetic waves in free space. Tesla considered the use of wireless power 

transmission employing low-frequency transmission, sustained by the earth’s natural 

electromagnetic resonance. His concept is important to later studies of electromagnetic-

wave propagation. There has been intense interest in WPT recently for a number of 

applications. These include remote propulsion of vehicles [2], transmission of solar 

power from space [3] and wireless battery charging [4]. A related area is energy 

harvesting, where stray electromagnetic fields from the many systems in the environment 

are collected and used as a free energy source [5]. 

Micro-air-vehicle (MAV) propulsion is the main application of interest in this 

research. MAVs are a category of unmanned air vehicles (UAVs) being developed 

around the world. The definition of an MAV, according to the Defense Advanced 

Research Project Agency (DARPA), is a fully functional UAV no larger than 15 cm in 

length, width, and height [6]. The main reason for using wireless power transmission for 

military ground-surveillance applications is to achieve unlimited duration of flight 

without requiring onboard fuel supplies. One application that employs a MAV remotely 

powered by a small ground station is illustrated in Figure 1. 
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NPS MAV

GROUND STATION
OR RADAR

 

Figure 1.  Conceptual powering of an MAV by a ground station (From [6]). 

In this thesis, a rectifying antenna (rectenna) system based on studies performed 

by Tan [6] and Toh [7] was re-evaluated, simulated, and refined. This study also looks at 

a new antenna design and a full-wave rectifier concept. In order to verify and validate the 

design of the rectenna model, many tradeoffs were made. Different rectenna designs were 

investigated, and an improved design was implemented in hardware. 

The measured efficiency of the previous NPS rectenna was 26% to 37% [7]. This 

research changes the circuit design to yield better overall performance. The 

recommended design changes are shown to yield higher efficiency and lighter weight. 

The claimed theoretical efficiency of the rectifier designed by Toh [7] was approximately 

26-37%, which was insufficient to power a micro air vehicle designed by Tsolis [8]. 

B. OBJECTIVE 

The purpose of this thesis is to verify and analyze the different designs of the 

rectenna system and make improvements. Since the primary application considered is 

UAV propulsion, an important requirement is to minimize the antenna and rectifier 

circuit’s size and weight. A new dipole design is presented that is lightweight and 

compact. A full-wave rectifier circuit is proposed, which increases the output power over 

that of the half-wave rectifier design.  
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C. THESIS OUTLINE  

This thesis is divided into six chapters. The next five are organized as follows:  

Chapter II introduces the development of WPT from the early 1950s through 

today. References to various WPT studies and applications are also covered in this 

chapter. An overview of related thesis projects that were conducted at the Naval 

Postgraduate School is presented. 

Chapter III focuses on three different rectenna designs, the components of a 

rectenna circuit, and evaluation of various circuit designs by using Advanced Design 

System (ADS) 2009 software from Agilent Technologies. Analysis of the dipole antenna 

dimensions, Schottky diode, and substrate material are covered in this chapter. Chapter 

III also discusses the effects of pre- and post-rectification filtering. The design of a 

rectenna with and without filters is documented, and a comparative study of the 

performance of the pre-, post-, and no-filter designs analyzed. 

Chapter IV discusses the impedance of the rectenna and dipole-antenna array. 

Chapter V summarizes the findings of this research and presents conclusions and 

recommendations for future research. 
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 5

II. BACKGROUND 

A. EARLY EXPERIMENTS WITH WPT 

The concept of wireless power transmission (WPT) began in the 1900s. The 

objective of WPT is to transfer electrical power through space without the need for cables. 

Conventional communication systems such as radio and cell phones only transmit small 

amounts of energy, but WPT must transfer a significant amount of power in order to 

charge a battery or propel vehicles. A generic WPT block diagram is shown in Figure 2. 

A key component in the receiving system is the rectifying antenna, or rectenna.  

 

Figure 2. Generic WPT-system block diagram. 

Brown conducted wireless power-transmission research in 1963 [1]. In his article, 

Brown wrote a description of the development of WPT and the milestones along the way. 

Previously, Tesla carried out numerous experiments to transmit power without a wire at 

Colorado Springs in 1899 (Figure 3). A gigantic coil was built and fed with 300 kW of 

low-frequency power in order to produce very long and visible discharges from the 

sphere, but there is no record of whether any significant amount of power was collected 

at a distant location. Although Tesla’s experiments ended due to lack of land and funding, 

his concept of efficient, wireless power transmission was important to future research.  
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Figure 3. Experiment with radio waves for power transmission (From [1]). 

In the late 1930s, a further advance in WPT occurred with the invention of the 

klystron tube, which converted microwave power into dc power by using microwave 

power tube at one end and dc diode tubes at the other. Advances in the microwave-cavity 

magnetron led to higher efficiency for WPT applications during World War II. 

In the 1950s, two advances were enabled by the invention of the amplifier tube, 

which created a larger amount of transmitting power [9] to drive an electromagnetic 

beam, and the focusing of electromagnetic power into a beam for high efficiencies [10]. 

In May 1963, Raytheon demonstrated the first microwave-power transmission system, 

which converted 400 W of CW power at the transmitter to 100 W of dc power to drive a 

motor. 
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In October 1964, a demonstration of microwave-powered helicopter flight up to 

60 ft. above a transmitting antenna was presented (Figure 4). In November of that year, a 

nonstop, 10-hour hover was demonstrated. 

 

Figure 4. A helicopter powered by WPT (From [1]). 

The concept of a solar-power satellite (SPS) introduced in the 1960s also relied on 

WPT, as illustrated in Figure 5. In the SPS concept, solar energy collected in orbit is 

converted into microwave power for transmission to a large antenna on ground. With oil 

consumption increasing over the past years, WPT technology has become an alternative 

source of energy by transmitting collected solar power from satellites to an earth rectenna 

station. Solar energy transmitted by WPT is environmentally clean and available 24 hours 

a day from space by using satellites as collection stations. Although the SPS program 

ended in 1980, it redirected the design of the transmitter antenna to an active, phased 

array made from a large number of microwave generators instead of super power tubes.  
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For ground-based arrays, the low-cost, microwave-oven magnetron could be used directly 

in the SPS. Pacific Gas and Electric (PG&E) has recently funded a study to design a 

commercial SPS system [3].  

 

Figure 5. Satellite solar-power model (From [14]). 

In the 1990s, the advancement of WPT related to the use of solid-state silicon-

based PN junction diodes, which have a high turn-on voltage, and new GaAs Schottky 

diodes that have fast switching capability for the high-frequency rectification processes. 

Semiconductor devices were became suitable for achievement of high-rectification 

efficiency in WPT applications. The first fuel-less plane powered by microwave was 

produced by Joseph in September 1987 [2]. An array of antennas was used to transmit 

microwaves onto the plane disc with a dual-polarized rectenna. The airplane flew on 

beamed microwave for 20 minutes. 

B. RECENT DEVELOPMENTS IN WPT 

Recently there has been increased activity in WPT. In a September 1999 article by 

Youn [11], a WPT system achieving a single rectenna conversion efficiency of 75.6% 

and an overall system efficiency of 33% are described.  
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Hagerty [12] proposed an array of 64 circularly polarized spiral elements and used 

a broadband-antenna array to convert more microwave power into dc power. The 

achievement of 20% efficiency over a frequency range of 2–18 GHz was reported. 

A December 2002 survey article on space solar-power (SSP) program research 

was written by McSpadden [13]. McSpadden gave insight on achieving practical SSP and 

emphasized three critical components: the transmitter, beam control, and rectennas. 

Although it was acknowledged that the technology was immature, a strategic roadmap 

was highlighted for future investigation. 

In [14], Goel proposed that a solar-power satellite could be placed in halo orbit to 

be fixed over the earth’s midnight as the earth rotates. The proposed orbit, known as the 

trans-earth Lagrange point, obviates the need for a rotating joint between the solar array 

and microwave transmitter, making a simpler design possible. 

C. RECENT RESEARCH IN RECTENNAS 

In [15], a dual-frequency. printed-diode rectenna system using a GaAs Schottky 

diode that could achieve 84.4% and 82.7% efficiency at 2.45 and 5.8 GHz, respectively, 

is reported. The dual-frequency rectenna system is illustrated in Figure 6. 

 

Figure 6. Circuit configuration of the dual-frequency rectenna (From [15]). 
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Reference [16] by Strassner contains an article on a 5.8 GHz, circularly polarized 

rectenna design and array. Strassner demonstrated the feasibility of a rectenna array 

scaled 3 feet wide by 2 feet long and 4 inches tall, with an efficiency of 82% and output 

power of 7.6 W.  

Reference [17] reports a circular-sector antenna using inset feeding in order to 

exhibit high reflection coefficients at the second and third harmonics generated by the 

diode. As illustrated in Figure 7, the rectenna can eliminate the need for a low-pass filter 

(LPF) placed between the antenna and the diode, as well as achieve a conversion 

efficiency of 77.8% at 2.4 GHz. 

 

Figure 7. Block diagram of the conventional and the proposed rectenna 
(From [17]). 

In [18], Zbitou reported a monolithic rectifier design with a second diode acting 

as a variable resistor to achieve an overall efficiency of 65% at 2.54 GHz. He conducted 

the study using a GaAs, pseudomorphic, high-electron-mobility transistor process to 

develop a monolithic rectifier to minimize circuit dimensions. The dimension of the 

rectenna was 1340 μm by 476 μm. 
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The use of full-wave rectification for rf-to-dc conversion showed that 70.69% 

rectenna efficiency could be achieved with an input power of 45 mW [19]. The 

conversion efficiency depends on load resistance, due to the internal resistance of the 

rectenna system (Figure 8). 

 

Figure 8. Full-wave rectification (From [19]). 

A recent article by Olgun [20] reported that a rectenna system combining a two-

stage, zero-bias Schottky diode with a miniature antenna could achieve 70% efficiency at 

2.4 GHz. The diodes are in parallel to rf signals, but appear in series for the dc circuit in 

order to produce doubled voltage. The circuit layout of the rectenna is depicted in Figure 

9. 
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Figure 9. Circuit design of the rectenna (From [20]). 

D. PREVIOUS NPS RESEARCH 

Students at Naval Postgraduate School have looked into aspects of WPT for MAV 

propulsion. Vitale [21] utilized a metal semiconductor diode to design a rectification 

circuit and was able to experimentally determine the scattering parameters (S parameters) 

of the diode. He highlighted that future research into employing GaAs Schottky diodes 

for higher rectification efficiency and using a high power source for examining 

improvement on the MAV antenna design.  

Tsolis [8] extended Vitale’s work by using Schottky diodes with a patch antenna, 

but efficiency was verified to be only 7%, due to the mismatch of impedance. Tan [6] 

investigated various designs of antennas and concluded that a round-patch antenna and 

sixth-order filters were the better design. He recommended that further analysis into 

building rectenna to determine the fabrication robustness and conversion efficiency. 

Toh [7] improved Tan’s design by matching the impedance of the rectenna system. 

Toh introduced an impedance-matching unit and simulated his design using software. 

The prototype of the rectenna system was fabricated and tested. The overall efficiency of 

a single rectenna element varied between 26% and 37%. 
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E. SUMMARY 

In this chapter, the major milestones in the development of WPT were highlighted 

and a brief history of WPT was covered. Much research has been conducted to determine 

the feasibility of implementing WPT and its applications, which range from miniaturized 

versions of remotely powered vehicles to large-scale systems. In the next chapter, 

rectenna design is addressed in detail. 

Equation Chapter 3 Section 1 
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III. RECTENNA DESIGN 

A. DISCUSSION OF RECTENNA DESIGN 

1. General Rectenna Design 

A rectifying antenna (rectenna) receives a microwave signal at the antenna and 

converts it to direct current. It should do this as efficiently as possible and provide a clean, 

constant, low-ripple voltage. Typically, a rectenna is composed of four components: (1) 

an antenna, (2) a pre-rectification filter, (3) a rectification diode, and (4) a post-

rectification filter [7]. The basic configuration of the previous NPS rectenna systems is 

depicted in Figure 10. 

 

Figure 10. Basic configuration of NPS rectenna system (From [7]). 

There are many candidate antenna designs, such as half-wave dipole, horn, 

parabolic antenna, and microstrip antenna. Some of these can be discarded for this 

application, due to their weight or size. In reference [8], Tsolis concluded that a circular-

patch antenna was preferred, in part due to its capability of reducing the reradiation of 

harmonics. Figure 11 shows the 11S  (return loss) response of a circular-patch antenna. 

Ideally, the return loss of a circular-patch antenna is about 50 dB. In practice, the return 

loss is likely to be 15 dB to 20 dB. (Return loss is a positive quantity equal to the 

negative of  11S  in dB.) 
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Figure 11. 11S  frequency response of circular-patch antenna design (From [7]). 

The antenna feeds directly into a pre-rectification filter. It allows the 10 GHz 

operating frequency to pass and prevents interference signals and re-radiation of higher-

order harmonics generated by the diode. It also helps provide a constant load impedance 

for the antenna. Tan [6] selected a sixth-order LPF instead of a fourth-order LPF, due to 

its better response at 10 GHz. Figure 12 shows that the 12S  (insertion loss) is 0.078 dB 

(insertion loss is the negative of 12S  in dB.) 
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Figure 12. Simulated response of sixth-order low pass filter using ADS 
software (From [7]). 

Rectification is the key function of the rectenna: converting microwave rf energy 

into dc power. In reference [8], the Schottky diode was used as the rectifying device, due 

to a high switching capacity that enables it to follow a high-frequency input signal. A 

commercial Avago HSMS8101 was used in the NPS rectenna system [7], [8]. The 21S  

response of the Schottky diode is depicted in Figure 13. The value of 21S  is about -0.5 dB 

at 10 GHz [7]. 
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Figure 13. Simulated response of Schottky diode using ADS software  
(From [7]). 

A post-rectification filter is used to extract the dc component and produce a 

smooth transient for output dc power. Toh [7] developed a post-rectification filter by 

simply using a 47 pF capacitor in the circuit design. 

Tsolis [8] studied the MAV motor prototype DMMK06-10 and measured data for 

the motor. Toh [7] confirmed the characteristics of the motor given in Table 1. In order to 

hover the weight of 10 g with 0.952 W, Toh concluded that at least 22 rectenna elements 

are needed, with each rectenna producing a maximum power of 75 mW. He also 

implemented a half-wave rectenna and measured the maximum power produced by a 

single rectenna to be 41.15 mW. In order to hover the MAV, the present research needed 

to produce more dc power from each rectenna than the previous half-wave rectenna and 

design a lighter-weight rectenna circuit. 
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DMMK06-10 Motor’s characteristics 

Weight (g) net 5 10 15 20 25 30 

Voltage (V) 5.5 7 8.1 9.9 11.5 14 16 

Current (A) 0.1 0.136 0.17 0.22 0.264 0.319 0.357 

Resistance 
( ) 

54.9 51.4 47.4 45 43.5 43.8 44.8 

Power (W) 0.55 0.952 1.3817 2.1780 3.0360 4.4660 5.7120 

Round Per 
Minute 

1200 1440 1620 1740 1770 1800 2100 

Table 1. Measured data for the MAV motor (From [7]). 

2. Antenna Design 

In order to obtain a lightweight rectenna design for MAV applications, we discuss 

possible changes or removal of components of the rectenna. First, we propose using a 

half-wave dipole antenna instead the original circular-patch antenna to reduce weight. 

Figure 14 illustrates the structure of the half-wave dipole antenna over a ground plane 

modeled in CST Microwave Studio. The dipole has a unique design: only one arm is fed 

by the microstrip line, while the other arm is open. As will be discussed in a later section, 

this represents the situation that occurs when the dipole is used in a full-wave rectenna. 
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Figure 14. Two views of the half-wave, dipole-antenna structure. 

Table 2 lists the design specifications for the data in Figure 15 through 17.  
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Half-wave dipole’s specifications 

Dipole wire radius (r) 0.25 Gap width (g) 1.5 

Substrate height (t) 0.508 Dipole height above ground (h) 9 

50 ohm line width (d) 1.6829 Sample width (X) 25 

Dipole length (L) 25 Sample length (Y) 35 

Table 2. Design specifications for the half-wave dipole antenna. 

Figure 15 shows the 11S  response of the half-wave dipole antenna. The return loss 

is about 23.5 dB at 10 GHz. The impedance of the antenna is 44+j1.6 Ω at 10 GHz as 

noted on the Smith chart in Figure 16. 

 

Figure 15. 11S  frequency response of half-wave, dipole-antenna design. 
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Figure 16. Smith chart of the half-wave, dipole-antenna design. 

The pattern, gain, and radiation efficiency of the antenna are given in Figure 17. 

The coordinate system is defined in Figure 14. The pattern plotted is 
22

E E E   . 

The pattern gives good coverage over a wide range of angles. The large backlobe is from 

radiation by the microstrip feed line. It will be shielded in the final design. The return loss 

and pattern were found to be sensitive to the ground-plane size and dipole height. Smaller 

ground planes required a higher dipole for a good impedance match. From the simulation, 

we observe that using a half-wave dipole antenna has acceptable return loss and pattern. 
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Figure 17. Three-dimensional, far-field radiation pattern of the half-wave, 
dipole-antenna design. 

3. Power Budget 

In this section, we introduce the effective area of the transmitting and receiving 

antennas and calculate the power density in order to obtain the required transmitter power 

for various distances. Figure 18 shows the geometry. 

 

Figure 18. Diagram of the transmit antenna and rectenna. 
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The effective area of the dipole antenna over a perfect ground plane is calculated 

using: 

 
2

4
r

er

G
A




  (3.1) 

where rG  is the gain of the dipole antenna and   is the wavelength at 10 GHz. From 

Figure 17, the gain is 6.16 dB = 4.13. Using Eq. (3.1), the effective area of the dipole 

antenna is 42.96 10 2m . The power density iW  transmitted by the horn antenna at 

distance R  can be expressed as 
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where tP  is the transmitted power, etA  is the effective area of the horn antenna, and R  is 

the distance between transmitting and receiving antennas. The effective area of the horn 

antenna is the physical area ( A ) times the efficiency, te . Assuming horn dimensions of 3 

inches by 4 inches and an efficiency of 0.7, 0.0054etA  2m , the power rP  received by 

dipole antenna can be expressed as 
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   (3.3) 

Using Equation (3.3), the required transmitting power versus the distance between 

transmitting and receiving antennas to obtain 200 mW of received power is given in 

Figure 19. From Figure 19, the transmitted power is 1.35 W for the distance of 30 cm, 

and the received power will be 200 mW. This analysis assumes the distance R  is in the 

far field of the horn antenna. 
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Figure 19. Required transmitting power versus distance with 200 mW 
received power.     

Next, we evaluate the various rectenna configurations by simulating the 

conversion efficiency and discuss the effect of changing the position of the pre-

rectification filter in rectenna design by analyzing the harmonics in the frequency domain. 

B. COMPARISON OF DIFFERENT DESIGNS USING ADS 

In this section, we simulate the rf-to-dc efficiency of different rectenna designs, 

such as a half-wave-rectification rectenna, hybrid rectenna, and full-wave rectenna. 

Agilent ADS2009 is used to evaluate and compare the performance of the various 

designs. This software provides numerous simulation technologies, covering issues such 

as electromagnetic-field simulation and frequency and time-domain circuit simulation. To 

compare performance with the NPS rectenna design, we model the original rectenna 

circuit of Toh [7] using the  HSMS8101 Schottky diode and sixth-order LPF. 
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1. Half-Wave-Rectification Rectenna Design 

The half-wave-rectification rectenna has the advantage of simple circuit layout 

and ease of fabrication as a microstrip structure [22]. A block diagram of a half-wave-

rectification rectenna is depicted in Figure 20. 

 

Figure 20. Block diagram of half-wave rectification rectenna (From [22]). 

In references [6], [7] a half-wave rectifier design was used. The circuit layout of 

the rectenna is given in Figure 21. 

 

Figure 21. ADS S-parameter circuit model of Toh’s rectenna (From [7]). 
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Toh removed the dc pass filter because it was too small to solder correctly and it 

was found not to significantly affect output [7]. Omitting this component results in some 

ripple in the output dc; however, to minimize size and weight, the low-pass filter is 

possibly a component that can be omitted for some circuit designs. Figures 22 to 24 

illustrate three different circuit designs of a half-wave rectenna that will be simulated in 

ADS. The three half-wave rectifier designs are: (1) with a pre-LPF, (2) with a post-LPF, 

and (3) without any LPF. 

 

Figure 22. ADS model of a half-wave rectenna design with a pre-LPF. 
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Figure 23. ADS model of a half-wave rectenna design with a post-LPF. 

 

Figure 24. ADS model of a half-wave rectenna design without LPF. 
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All three designs utilize a capacitor after the diode. In reference [21], Vitale noted 

that the output voltage when the diode is not conducting is compensated for by the 

discharge of the filter capacitor. It can be expressed as 

   Lt R C
out PV t V e  (3.4) 

where PV  is the peak voltage of the rectified signal, LR  is the load resistance, and C  is 

the filter capacitance. For LR C T  , the exponential can be approximated by 

1
L

T
R C

  
   and the minimum output voltage can be expressed as 

 min 1P
L

T
V V

R C

 
  

 
 (3.5) 

where T
 
is a full period of the input sinusoid. He also determined that the output dc 

voltage outV  is approximated by the average voltage between the peak voltage
 
and the 

minimum output voltage 
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 
 (3.6) 

Figures 25 to 27 illustrate the output dc power produced by the three different circuit 

designs of a half-wave rectenna that were simulated in ADS. 
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Figure 25. Output power (watts) versus time for a half-wave rectenna design 
with a pre-LPF. 

 

Figure 26. Output power (watts) versus time for a half-wave rectenna design 
with a post-LPF. 
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Figure 27. Output power (watts) versus time for a half-wave rectenna design 
without LPF. 

In addition, rf-to-dc conversion efficiency   in percent is calculated as follows: 

 
 

100DC L

RF

V R

P
    (3.7) 

where DCV
 
is dc output voltage, LR

 
is load resistance, and RFP  is microwave input power. 

The simulated conversion efficiency of the half-wave rectennas is compared by 

using Equation (3.7). In Figure 28, the efficiency of the rectenna with post-LPF is higher 

than those for the pre-LPF and no LPF at their highest power levels. In comparison to the 

other designs shown in Figure 28, the design with post-LPF is able to convert wireless 

power to dc power with an efficiency of 54.3% at an input power of 150 mW, but the 

design with pre-LPF only achieves an efficiency of 45.8% at the same input power. In 

specific applications with input power smaller than 100 mW, we prefer the half-wave-

rectification rectenna with pre-LPF to achieve a high conversion efficiency.   
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Figure 28. Conversion efficiency of simulated half-wave rectenna designs 
using ADS. 

2. Hybrid Rectenna Design 

In reference [18], Zbitou developed hybrid rectenna that achieved a conversion 

efficiency of 56% at 2.45 GHz. The block diagram of the hybrid rectenna is depicted in 

Figure 29. The function of the second diode is to provide a variable resistance in series 

with the load. 
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Figure 29. Block diagram of hybrid rectenna (From [18]). 

Zbitou considered the dc equivalent circuit of the Schottky diode as a voltage 

source in series with the junction resistance jR  and that the output voltage of the rectifier 

can expressed as 

 L
out DC

L j

R
V V

R R



 (3.8) 

where DCV  is the dc part of the diode junction voltage and jR  is the junction resistance of 

the Schottky diode. jR  is obtained by differentiating the diode voltage-current 

characteristics and is given by [18] 

 
 j

s b

nKT
R

q I I



 (3.9) 

where n  is the diode ideality factor, K  is Boltzmann’s constant, q  is the electronic 

charge, sI  is the diode saturation current, bI  is the external bias current, and T  is the 

temperature of the diode in degrees Kelvin. For the HSMS2820 diode, jR  is 

approximately 1.7 M at ambient temperature, which tends to decrease the value of outV , 

as evident from Equation (3.8). According to Equation (3.8), an increase in voltage at low 

power levels can be obtained when a variable resistance, which fluctuates as jR , is 

connected in series with LR . The value of this variable resistor must change with the  
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rectified current. Thus, Zbitou employed a technique using the same Schottky diode in 

series with LR , in the dc portion of the rectifier, to act as a variable resistor (due to its 

current dependence in the junction resistance). 

Three variations of the hybrid circuit are evaluated. Two incorporate an LPF 

(Figures 30 and 31). The third eliminates the LPF in order to minimize size and weight 

(Figure 32). 

 

Figure 30. ADS model of a hybrid rectenna design with a pre-LPF. 
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Figure 31. ADS model of a hybrid rectenna design with a post-LPF. 

 

Figure 32. ADS model of a hybrid rectenna design without LPF. 
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Figures 33 to 35 illustrate the output dc power produced by three different circuit 

designs of hybrid rectenna that were simulated in ADS. 

 

Figure 33. Output power (watts) versus time for a hybrid rectenna design with 
a pre-LPF. 

 

Figure 34. Output power (watts) versus time for a hybrid rectenna design with 
a post-LPF. 
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Figure 35. Output power (watts) versus time for a hybrid rectenna design 
without LPF. 

The simulated conversion efficiency of the three hybrid rectenna designs are 

given in Figure 36. The efficiency of the hybrid rectenna with post-LPF is higher than 

those with pre-LPF and no-LPF. In comparison to the previous results given in Figure 36, 

the design with post-LPF is able to convert wireless power to dc power with an efficiency 

of 61.2% at an input power 140 mW, but the design with pre-LPF only achieves an 

efficiency of 45% at the same input power. 
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Figure 36. Simulated conversion efficiency of the hybrid rectennas. 

3. Full-Wave Rectenna Design 

In reference [23], Chiou presented a full-wave rectenna circuit in order to obtain a 

more stable dc output voltage than that a half-wave rectenna of the same chip area. He 

demonstrated the feasibility of a rectenna with an efficiency of 53% at an incident 

radiation power density of 30 2W cm  and frequency of 35 GHz. The rectenna comprised 

a power-receiving linear tapered slot antenna (LTSA), a slot line (SL) to finite-width 

ground coplanar waveguide (FGCPW) transition, a bandpass filter (BPF), a full-wave 

rectifier for rf-to-dc conversion, a dc bypass capacitor, and a resistive load. The 

fabricated rectenna with off-chip lumped elements is depicted on Figure 37. 
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Figure 37. Block diagram of full-wave rectifier (From [23]). 

As in the previous circuit, in order to minimize the size and weight, elimination of 

the low-pass filter is considered. For our design, a microstrip-fed dipole will be used in 

place of the LTSA. It is a lighter-weight structure that can be tuned to 10 GHz, whereas 

the LTSA is a broadband structure. Figures 38 to 40 illustrate the three different circuit 

designs for a full-wave rectenna. 

In the ADS model, the antenna is represented by a power source with 50 Ω 

impedance. The diodes are matched using shorted stubs placed the required distance from 

the diodes. The stub location and stub length were computed using the standard stub-

matching procedure [24]. Then the ADS optimization program was used to adjust the line 

lengths so the output power was a maximum. 
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Figure 38. ADS model of a full-wave rectenna design with a pre-LPF. 

 

Figure 39. ADS model of a full-wave rectenna design with a post-LPF. 
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Figure 40. ADS model of a full-wave rectenna design without LPF. 

The same method used to obtain Equation (3.4) was applied to the full-wave 

rectenna for the discharge time. The derivative expression for the output voltage outV  

becomes 
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Equation (3.6) and (3.10) show that the average output voltage of the full-wave rectenna 

can approach double the half-wave rectenna. 

Figures 41 to 43 illustrate the output dc power produced by three circuit designs 

of the full-wave rectenna that were simulated in ADS. 



 42

 

Figure 41. Output power (watts) versus time for a full-wave rectenna design 
with a pre-LPF. 

 

Figure 42. Output power (watts) versus time for a full-wave rectenna design 
with a post-LPF. 
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Figure 43. Output power (watts) versus time for a full-wave rectenna design 
without LPF. 

The simulated conversion efficiencies of the three full-wave rectenna designs are 

given in Figure 44. In Figure 44, the efficiency of the full-wave rectenna with post-LPF 

and no-LPF are the same and higher than that with pre-LPF. In comparison with the 

previous results in Figure 33, the design with no LPF is able to convert wireless power to 

dc power with an efficiency of 68.1% at an input power of 170 mW, but the design with 

pre-LPF only achieves an efficiency of 56.6% at the same input power. 
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Figure 44. Simulated conversion efficiency of full-wave rectenna using ADS 
with different LPF. 

4. Conclusion 

Comparing previous results, we observed that the conversion efficiency of the 

hybrid rectenna is higher than that of the half-wave rectenna, which confirms the research 

conducted by Zbitou [18]. In order to hover the MAV, the full-wave rectenna with no 

LPF is selected to achieve the highest efficiency (68.1%) of the various rectenna designs 

and obtain more stable dc power than with the half-wave rectenna. The full-wave 

rectenna with no LPF also provides a lightweight design for the MAV application. 

C. EVALUATION OF HARMONIC FREQUENCIES 

In reference [12], Hagerty reported that reflected harmonic energy from the input 

or output side of the diode can alter the voltage across the diode. The diode also begins to 

bias itself as it produces more dc current, thus moving the dc operating point of the I-V 

curve in a nonlinear fashion. The diode’s harmonic frequency components can possibly 

be radiated by the antenna, causing interference with other systems. Based on the 
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properties of the diode at microwave frequencies, we simulate and analyze the radiated 

harmonics and dc power of different rectenna designs for an input microwave power at 

10 GHz. This can be accomplished using the harmonic balance (HB), nonlinear-circuit 

analysis module of the ADS software.  

1. Harmonic Balance Analysis for the Half-Wave Rectenna 

Figures 45 to 46 illustrate the harmonic balance of a half-wave rectenna with pre-

LPF. The power in the fundamental frequency, the second through fourth harmonics, and 

the dc power are shown at four locations in the circuit (at the probes highlighted in the 

figure). These are the same cases shown in Figures 25 through 27, and their voltage and 

power curves were shown previously.  

 

Figure 45. Harmonic balance of configuration in half-wave rectenna with pre-
LPF. 



 46

 

Figure 46. Simulated input power, reradiated harmonic powers, and dc power 
(in dBm) versus frequency for the half-wave rectenna with pre-LPF. 

The simulation results for the power in the harmonics at different nodes in the 

circuit are given in Table 3. Pbf is the power before the low-pass filter, Paf is the power 

after the low-pass filter, Pbs is the power after the Schottky diode, and Pout is the power 

at the output of the circuit. The unit is dBm. Examination of the results in Table 3 shows 

that the harmonics reflected by diode are eliminated by the low-pass filter. The 80 pF 

capacitor performs as a dc pass filter to eliminate any leakage of 10 GHz signal. We 

confirm the above simulation by comparing the dc power of the harmonic balance 

simulation with that of the transient simulation, and found that the two results agree. 
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Harmonic balance analysis data for fundamental frequency of 10 GHz  
(Pin=23 dBm) 

Node 0 Hz 10 GHz 20 GHz 30 GHz 40 GHz 

Pbf (dBm) -34.302 22.887 -13.708 -51.469 -75.358 

Paf (dBm) -34.302 22.887 -13.708 -51.469 -75.358 

Pas (dBm) 19.634 -26.804 -45.813 -74.595 -86.818 

Pout (dBm) 19.634 -26.804 -45.813 -74.595 -86.818 

Table 3. Harmonic balance data for the half-wave rectenna with pre-LPF. 

Figures 47 to 48 illustrate the harmonic balance model of the half-wave rectenna 

with post-LPF and the power probes at different nodes in the circuit. 

 

Figure 47. Harmonic balance simulation configuration for the half-wave 
rectenna with post-LPF. 
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Figure 48. Simulated input power, reradiated harmonic powers, and dc power 
(in dBm) versus frequency for the half-wave rectenna with post-LPF. 

Table 4 is a list of the power in the harmonics at different nodes in the circuit 

shown in Figure 45. Pbs is the power before the Schottky diode, Pas is the power after the 

diode, Paf is the power after the low-pass filter, and Pout is the power at the output. A 

comparison of the results in Table 4 shows that the highest harmonic reflected by diode 

and reradiated toward antenna was about 6 dBm at 20 GHz; the third and forth harmonics 

were negligible for this design. The low-pass filter and 80 pF capacitor reduced the 
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harmonics produced by diode and produced stable dc power. We confirmed the above 

simulation by comparing the dc power of harmonic balance simulation with the transient 

simulation, and the results agree. 

Harmonic balance analysis data for fundamental frequency of 10 GHz  
(Pin=23 dBm) 

Node 0 Hz 10 GHz 20 GHz 30 GHz 40 GHz 

Pbs (dBm) -34.555 22.342 5.914 -10.423 -28.589 

Pas (dBm) 19.381 -25.154 -55.312 -99.631 -129.019 

Paf (dBm) 19.381 -25.154 -55.312 -99.631 -129.019 

Pout (dBm) 19.381 -25.154 -55.312 -99.631 -129.019 

Table 4. Harmonic balance data for the half-wave rectenna with post-LPF. 

Figures 49 to 50 illustrate the harmonic balance of the half-wave rectenna without 

LPF and the power in the fundamental frequency, harmonics, and dc at different nodes in 

the circuit. 

 

Figure 49. Harmonic balance simulation configuration for the half-wave 
rectenna without LPF. 
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Figure 50. Simulated input power, reradiated harmonic power, and dc power 
(in dBm) versus frequency for the half-wave rectenna without LPF. 

Table 5 is a list of the power in the harmonics at different nodes in the circuit. Pbs 

is the power before the Schottky diode, Pas is the power after the diode, and Pout is the 

power at the output. In comparison to the results in Table 5, the highest harmonic 

reflected by diode and reradiated toward antenna was about 5 dBm at 20 GHz, but the 

third and fourth harmonics were small and acceptable for our design. The 80 pF capacitor 

reduced the harmonics produced by diode and produced stable dc power. We confirmed 

the above simulation by comparing the dc power of the harmonic balance with the 

transient simulation, and the results agree. 
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Harmonic balance analysis data for fundamental frequency of 10 GHz  
(Pin=23 dBm) 

Node 0 Hz 10 GHz 20 GHz 30 GHz 40 GHz 

Pbs (dBm) -35.061 21.128 4.968 -3.422 -22.986 

Pas (dBm) 18.876 -27.815 -44.730 -59.540 -78.615 

Pout (dBm) 18.876 -27.815 -44.730 -59.540 -78.615 

Table 5. Harmonic-balance data for the half-wave rectenna without LPF. 

2. Harmonic Balance Analysis for the Full-Wave Rectenna  

Figures 51 to 52 illustrate the harmonic balance of a full-wave rectenna with pre-

LPF and the power in the fundamental frequency, harmonics, and dc at different nodes in 

the circuit. 

 

Figure 51. Harmonic-balance simulation configuration for the full-wave 
rectenna with pre-LPF. 
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Figure 52. Simulated input power, reradiated harmonic power, and dc power 
(in dBm) versus frequency in full-wave rectenna with pre-LPF. 

The power in the harmonics at different nodes in circuit is given in Table 6. Pbf is 

the power before the lowpass filter, Paf is the power after LPF, Pas is the power after the 

Schottky diode, Pfin is the combined power after the two diodes and Pout is the power at 
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the output of the circuit. The harmonics reflected by diode were eliminated by the low-

pass filter. The full-wave architecture essentially eliminates the frequencies of 10 GHz 

and 30 GHz at the output. The 10 pF capacitor performs as a dc pass filter to eliminate 

the frequencies 20 GHz and 40 GHz. These simulation results were compared to the 

transient simulation, and the results agree. 

Harmonic balance analysis data for fundamental frequency of 10 GHz  
(Pin=23 dBm) 

Node 0 Hz 10 GHz 20 GHz 30 GHz 40 GHz 

Pbf (dBm) -40.149 19.934 -145.177 -59.528 -188.391 

Paf (dBm) -40.149 19.934 -140.204 -59.528 -172.270 

Pas (dBm) 16.797 -145.791 -23.490 -170.867 -63.062 

Pfin (dBm) 19.808 -304.622 -20.480 -313.664 -60.051 

Pout (dBm) 19.808 -326.624 -20.480 -330.596 -60.051 

Table 6. Harmonic balance data for the full-wave rectenna with pre-LPF. 

Figures 53 to 54 illustrate the harmonic balance of the full-wave rectenna with 

post-LPF and the power in the fundamental, harmonics, and dc at different nodes in 

circuit. 
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Figure 53. Harmonic-balance simulation configuration for the full-wave 
rectenna with post-LPF. 
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Figure 54. Simulated input power, reradiated harmonic power, and dc power 
(in dBm) versus frequency for the full-wave rectenna with post-LPF. 
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The power in the harmonics at different nodes in the circuit is given in Table 7, 

where Pbs is the power before the Schottky diode, Pas is the power after the diode, Pbf is 

the combined power of the two diodes and measured before the LPF, Pfin is the power 

after LPF, and Pout is the power at output. In comparison to the results of Table 7, the 

highest harmonic power reflected by the diode was -2 dBm at 30 GHz and there was 

negligible power at 10 GHz after the diode for the full-wave design. The full-wave 

architecture also eliminates the frequency of 30 GHz after the diode. The 10 pF capacitor 

performs as dc pass filter to eliminate the frequency of 20 GHz and 40 GHz. The 

simulation results were compared to the transient simulation, and the results agree with 

each other. 

  Harmonic balance analysis data for fundamental frequency of 10 GHz 
(Pin=23 dBm) 

Node 0 Hz 10 GHz 20 GHz 30 GHz 40 GHz 

Pbs (dBm) -39.176 19.839 -144.086 -2.080 -169.107 

Pas (dBm) 17.770 -136.007 -38.575 -142.487 -106.223 

Pbf (dBm) 20.781 -300.027 -35.564 -295.822 -103.212 

Pfin (dBm) 20.781 -335.853 -35.564 -336.802 -103.212 

Pout (dBm) 20.781 -317.919 -35.564 -352.415 -103.212 

Table 7. Harmonic-balance data for the full-wave rectenna with post-LPF. 

Figures 55 to 56 illustrate the harmonic balance of full-wave rectenna without 

LPF and the power in the fundamental frequency, harmonics, and dc at different nodes in 

circuit. 



 57

 

Figure 55. Harmonic-balance simulation configuration for the full-wave 
rectenna without LPF. 
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Figure 56. Simulated input power, reradiated harmonic power, and dc power 
(in dBm) versus frequency for the full-wave rectenna without LPF. 

The simulation results for the power in the harmonics at different nodes in the 

circuit are given in Table 8. Pbs is the power before the Schottky diode, Pas is the power 

after the diode, Pfin is the combined power of the two diodes before the capacitor, and 

Pout is the power at the output. In comparison to the results in Table 8, the highest 

harmonic power generated by the diode was -3 dBm at 30 GHz and there was negligible 
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fundamental power at the output for the full-wave design. The 10 pF capacitor performs 

as a dc pass filter to eliminate the frequency of 20 GHz and 40 GHz. The simulation was 

compared to the transient simulation, and the results agree. 

  Harmonic balance analysis data for fundamental frequency of 10 GHz  
(Pin=23 dBm) 

Node 0 Hz 10 GHz 20 GHz 30 GHz 40 GHz 

Pbs (dBm) -39.277 19.824 -142.325 -3.127 -164.700 

Pas (dBm) 17.670 -151.310 -26.147 -175.864 -56.734 

Pfin (dBm) 20.680 -312.757 -23.137 -321.039 -53.723 

Pout (dBm) 20.680 -318.761 -23.137 -343.172 -53.723 

Table 8. Harmonic-balance data for the full-wave rectenna without LPF. 

3. Findings 

After comparing the three half-wave rectenna designs, we conclude that the half-

wave rectenna with pre-LPF has better performance due to its limitation of harmonics 

back toward the antenna and slightly higher efficiency, albeit not much. The half-wave 

rectenna only converts at best half of the microwave energy, but the full-wave rectenna 

ideally converts all power, due to its architecture. We also observe that the full-wave 

rectenna without LFP converts more dc power than other designs and the full-wave 

rectifier design eliminates the fundamental frequency and third harmonic frequency at the 

output. In order to have a lightweight rectenna, the full-wave rectenna without LFP is 

selected. In the next chapter, we discuss the impedance of the full-wave rectification 

rectenna without LPF and optimize the impedance matching unit.  
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IV. RECTENNA IMPLEMENTATION 

A. RECTENNA IMPEDANCE DESIGN 

Chapter III presented the simulation results for several different rectenna designs. 

We conclude that the full-wave rectenna without LPF meets the MAV requirement 

because of its higher conversion efficiency and constant output power. This chapter 

discusses the impedance matching of the rectenna and the circuit design and layout.   

1. Full-Wave Rectenna Design 

The full-wave rectenna design with the final optimized circuit and dielectric 

material is shown in Figure 57. The simulated output dc power, voltage, and current of 

full-wave rectenna are shown in Figure 58. The output power of the rectenna is 131 mW 

for an input power of 23 dBm, and the voltage oscillates from 2.55 V to 2.53 V. 

 

Figure 57. Final circuit design of full-wave rectification rectenna. 



 62

 

Figure 58. Simulated output power, voltage, and current-versus-time for the 
full-wave rectenna with a 23 dBm input. 

2. Performance of Full-Wave Rectenna Impedance Design 

The simulated conversion efficiency of the full-wave rectenna as a function of 

input power is shown in Figure 59. The full-wave design is able to convert microwave 

power to dc power with an efficiency of 65.9% at an input power of 200 mW. The 

simulated output power of the full-wave rectenna design is shown in Figure 60. The full-

wave design is able to produce 132 mW at an input power of 200 mW. In addition, the 

full-wave input–output characteristic is nearly linear, from 20 mW to 200 mW. From 200 

mW to 400 mW of input power, the output begins to saturate. As a result, we prefer using 

the full-wave rectenna design for MAV application at an input power of 200 mW because 

it achieves the highest efficiency. However, to obtain this high power output requires a 

very large power density at the antenna, as observed in Figure 19. 
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Figure 59. Conversion efficiency of final full-wave rectenna design. 

 

Figure 60. Output power (watts) of final full-wave rectenna design. 
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B. CIRCUIT LAYOUT AND TUNING 

1. Circuit Design Layout 

The final circuit-design layout is shown in Figure 61. In Figure 61, the full-wave 

rectenna includes a matching unit, two diodes, and one capacitor. Based on the ADS 

simulation, the HSMS 8101 has an 22S  characteristic impedance of 4.7 + j40 Ω. In order 

to have a compact circuit design to reduce the size and weight of the printed circuit board 

(PCB), we bend the impedance-matching unit. The length of   and d  are the same 

values as those in the ADS model in Figure 57. The calculation of the length of 0L  is 

discussed in the next section. For lightweight design, we select a dielectric constant of 

1.96 for the substrate. The properties of the dielectric material are listed in Table 9. 

 

Figure 61. Final circuit layout of the full-wave rectenna modeled in CST. 
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Dielectric Material  Duroid 5880LZ from Rogers Corporation 

Dielectric Constant r  1.96 0.04  

Loss Tangent, tan  0.0019 @ 10 GHz 

Substrate Height, h  0.508 mm microstrip circuit 

Copper Thickness 0.5 oz or 17 μm 

Table 9. Properties of Rogers Duroid 5880LZ. 

2. Calculation of the Matching Unit 

Figure 62 shows the portion of the circuit between an antenna terminal and the 

diode. As seen in Figure 61, the circuit occurs at both dipole terminals. When a sinusoidal 

voltage is applied at the terminals, one diode will conduct, appearing as a complex 

impedance. The values of   and d  have been chosen to match the conducting diode to 

the 50 Ω characteristic impedance of the line. This was done using the ADS parameter 

sweep.  

In order for the dipole to be matched at the conducting diode side, the other side 

must present an open circuit at the antenna terminal. Therefore 0L  must be chosen so that 

the combination of the open circuit at the diode ( d ) and its matching stub (  ) present an 

open circuit at the antenna terminal. 
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Figure 62. Circuit diagram showing the stub position. 

The impedance of the shorted transmission line   at the junction can expressed as 
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where 0Z  is 50 Ω and LsZ  is approximately 0 Ω. In addition, the impedance of the 

transmission line d  at the junction can be expressed as 
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The total admittance at the junction is 
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The impedance looking into the junction must be transformed through a distance 0L . 
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The maximum power from the antenna occurs when inY  equals to 0, therefore 
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This is the initial value of the length of the stub 0L  which is a function of totY . The length 

of this stub depends on the length of matching lines   and d .  

The parameter sweep in CST was used to fine-tune the value of 0L . Figure 63 

shows the CST model of the circuit with one terminal of the dipole connected to a 50 Ω 

line and the other diode open, to simulate a nonconducting half cycle. Figure 64 shows 

the best match at 10 GHz obtained with the parameter sweep. The value of 0L  is 4.226 

mm, which was used in the final design. The radiation pattern for the circuit of Figure 63 

is shown in Figure 65. 
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Figure 63. CST model of the circuit. 

 

Figure 64. 11S  frequency response of full-wave rectenna using CST. 
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Figure 65. Simulated result of the far-field radiation of full-wave rectenna 
using CST. 
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V. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

A. SUMMARY 

This thesis evaluated different rectenna designs for wireless power transmission 

for MAV applications using the ADS simulation software. The first and second chapters 

covered the history of WPT and research performed previously at NPS. Various 

rectification circuit designs and antennas were simulated using Agilent ADS software and 

CST Microwave Studio. A shorted stub microstrip tuner was introduced for impedance 

matching. The dipole-antenna array was selected to reduce the weight of the rectenna in 

order to hover a MAV. 

A full-wave rectenna without low-pass filter was selected to reduce the weight of 

the rectenna element yet achieve high conversion efficiency. In addition, a harmonic 

balance analysis was conducted in order to compare the influence of the harmonics on 

various circuit designs. The full-wave rectenna circuit was simulated to verify 

performance, and the conversion efficiency is about 65%. The length of matching units 

were calculated and optimized in Microwave Studio in order to lay out the circuit.  

B. RECOMMENDATIONS 

The result of this thesis shows that the improved full-wave rectanna converts 

more dc power than a half-wave rectenna, as verified by simulation. A dipole antenna 

was used instead of a circular-patch antenna in order to reduce the weight of the rectenna 

system. The conversion efficiency of the rectenna can be improved, however, and some 

recommendations follow. 

1. Using High-Power Transmitter and High-Gain Antenna 

The performance of the WPT can be further enhanced by complementing it with a 

high-power transmitter and high-gain antenna to increase the power-density incident on 

the rectenna array. 
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2. Building a Hardware Prototype 

Upon the successful design of the dipole antenna and rectifier circuit using CST 

Microwave Studio, it is necessary to build a prototype of the full-wave rectenna to 

measure the output dc voltage and current and determine the realized efficiency. 

3. Running Simulations for an Array 

The MWS simulation should be done for an array of dipoles to assess the effect of 

mutual coupling. The array element may need to be returned to compensate for the 

mutual coupling. 

4. Reducing Polarization Loss 

The dipole is linearly polarized, and therefore loss of signal will occur if the 

MAV antenna is orientated in a cross-polarized direction in flight. A circularly polarized 

antenna should be considered to reduce the polarization loss factor. 
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